Evidence of disorder in biological molecules from single molecule pulling experiments.
نویسندگان
چکیده
Heterogeneity in biological molecules, resulting in molecule-to-molecule variations in their dynamics and function, is an emerging theme. To elucidate the consequences of heterogeneous behavior at the single molecule level, we propose an exactly solvable model in which the unfolding rate due to mechanical force depends parametrically on an auxiliary variable representing an entropy barrier arising from fluctuations in internal dynamics. When the rate of fluctuations--a measure of dynamical disorder--is comparable to or smaller than the rate of force-induced unbinding, we show that there are two experimentally observable consequences: nonexponential survival probability at constant force, and a heavy-tailed rupture force distribution at constant loading rate. By fitting our analytical expressions to data from single molecule pulling experiments on proteins and DNA, we quantify the extent of disorder. We show that only by analyzing data over a wide range of forces and loading rates can the role of disorder due to internal dynamics be quantitatively assessed.
منابع مشابه
Multiple-bond kinetics from single-molecule pulling experiments: evidence for multiple NCAM bonds.
The kinetic parameters of single bonds between neural cell adhesion molecules were determined from atomic force microscope measurements of the forced dissociation of the homophilic protein-protein bonds. The analytical approach described provides a systematic procedure for obtaining rupture kinetics for single protein bonds from bond breakage frequency distributions obtained from single-molecul...
متن کاملModel accounting for the effects of pulling-device stiffness in the analyses of single-molecule force measurements.
Single-molecule force spectroscopy provides a powerful approach for investigating molecular transitions along specific reaction coordinates. Here, we present a general analytical model for extracting the intrinsic rates and activation free energies from force measurements on single molecules that is applicable to a broad range of pulling speeds and device stiffnesses. This model relaxes existin...
متن کاملExperimental and Computational Characterization of Biological Liquid Crystals: A Review of Single-Molecule Bioassays
Quantitative understanding of the mechanical behavior of biological liquid crystals such as proteins is essential for gaining insight into their biological functions, since some proteins perform notable mechanical functions. Recently, single-molecule experiments have allowed not only the quantitative characterization of the mechanical behavior of proteins such as protein unfolding mechanics, bu...
متن کاملAnalyzing single-molecule manipulation experiments.
Single-molecule manipulation studies can provide quantitative information about the physical properties of complex biological molecules without ensemble artifacts obscuring the measurements. We demonstrate computational techniques which aim at more fully utilizing the wealth of information contained in noisy experimental time series. The "noise" comes from multiple sources e.g., inherent therma...
متن کاملVelocity convergence of free energy surfaces from single-molecule measurements using Jarzynski's equality.
We studied the velocity dependence of mechanical unfolding of single protein molecules with the atomic force microscope. We showed that with enough realizations, the free energy surfaces reconstructed from Jarzynski's equality converge with respect to pulling velocity, in good agreement with theory. Using the I27 domain of titin as an example, we estimated the required number of realizations fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 112 13 شماره
صفحات -
تاریخ انتشار 2014